Human Factors: What Does This Really Mean for Medical Devices

Shannon E. Clark

Overview

- 1. What is Human Factors?
- 2. Why is Human Factors Engineering Important?
- 3. What is the Human Factors Process for medical device development?

Background: Shannon Clark

Summary: Over 6 years of experience in medical device development, including human factors engineering, design, usability testing, usability risk analysis, risk management, V&V, CAD modeling, ergonomics, training development, marketing, compliance, auditing quality systems, and supervision

Certifications/Trainings:

- •ISO 13485 Lead Auditor (2012)
- •AAMI Quality System (2012)
- •AAMI Risk Management (2012)
- •AAMI Human Factors (2011)
- •Certified Professional Industrial Engineer, California (2014)

Articles and Patents

Total Recall: The Consequence of Ignoring Medical Device Usability, UX Magazine, 2012

http://www.usabilityprofessionals.org/uxmagazine/total-recall/

Patent: Method and System for Sizing an Oral Device, U.S. Patent Office #20120037166, February 2012.

Patent: Portable document camera and assembly for enabling same, U.S. Patent Office #20120169888, December 2015



Shannon Clark's Product Development Experience

UserWise Company Information

Location

919 The Alameda, San Jose, CA 95126

Company Mission

Our mission is to inspire usability engineering best practices within medical device companies and to facilitate the development of usable medical devices.

Personnel

- Principal Human Factors Consultant
- Three Human Factors Specialists
- Graphic Designer
- Engineering Intern

What is Human Factors Engineering?

FDA's Definition:

The application of knowledge about human behavior, abilities, limitations...to the design of medical devices including

- mechanical and software driven user interfaces...
- user documentation, and
- user training

to enhance and demonstrate safe and effective use.

Synonyms

- human factors engineering
- usability engineering
- user experience design
- user centered design
- cognitive engineering
- human engineering
- ergonomics

Adoption of Human Factors

Agency Focus/Effort on HF

Frequency of device manufacturers doing HF

Quality of HF Submitted by manufacturers

QSR 2000 Gdnce / HE 74 HF to ODE HF Staff + / HE751996 2000 2006 2009

Source: FDA.gov

More and Better HF

Applying Human Factors and Usability Engineering to Medical Devices

Guidance for Industry and Food and Drug Administration Staff

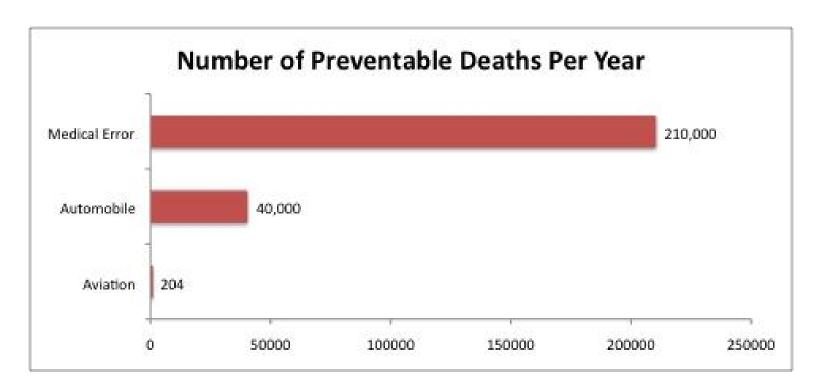
Document issued on: February 3, 2016

As of April 3, 2016, this document supersedes "Medical Device Use-Safety: Incorporating Human Factors Engineering into Risk Management" issued July 18, 2000.

The draft of this document was issued on June 21, 2011.

For questions regarding this document, contact the Human Factors Premarket Evaluation Team at (301) 796-5580.

U.S. Department of Health and Human Services
Food and Drug Administration
Center for Devices and Radiological Health
Office of Device Evaluation

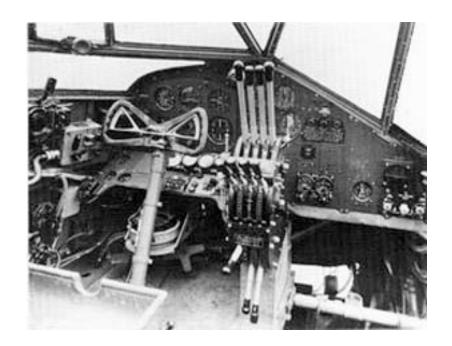


International Human Factors Standards

Standard	Title	Main Purpose			
AAMI/ANSI HE75:2009	Human Factors Engineering – Design of Medical Devices	Comprehensive reference that includes general principles, management of use error risk, design elements, integrated solutions			
ANSI/AAMI/IEC 62366-1:2015	Medical devices – Part 1: Application of usability engineering to medical devices	HFE/UE process applied to all applying HF/usability to medical device design, with consideration of risk management			
ANSI/AAMI/ISO 14971:2007/(R)2010	Medical Devices – Application of risk management to medical devices	Risk management process for medical devices			
IEC 60601-1-6:2010	Medical electrical equipment – Part 1-6: General requirements for basic safety and essential performance – Collateral standard: Usability	Provides a bridge between IEC 60601-1 and ANSI/AAMI/IEC 623			
IEC 60601-1-8 Edition 2.1 2012-11	Medical electrical equipment — Part 1-8: General requirements for basic safety and essential performance — Collateral Standard: General requirements, tests and guidance for alarm systems in medical electrical equipment and medical electrical systems	Design standard for alarm system in medical electrical equipment a systems			
IEC 60601-1- 11:2010 erWiseConsulting.com ht © 2016, UserWise, Inc.	Medical electrical equipment – Part 1-11: General requirements for basic safety and essential performance – Collateral Standard: Requirements for medical electrical equipment and medical electrical systems used in the home healthcare environment	Requirements for medical electric equipment used in non-clinical environments, including issues involving medical device use by users			

International Human Factors Standards

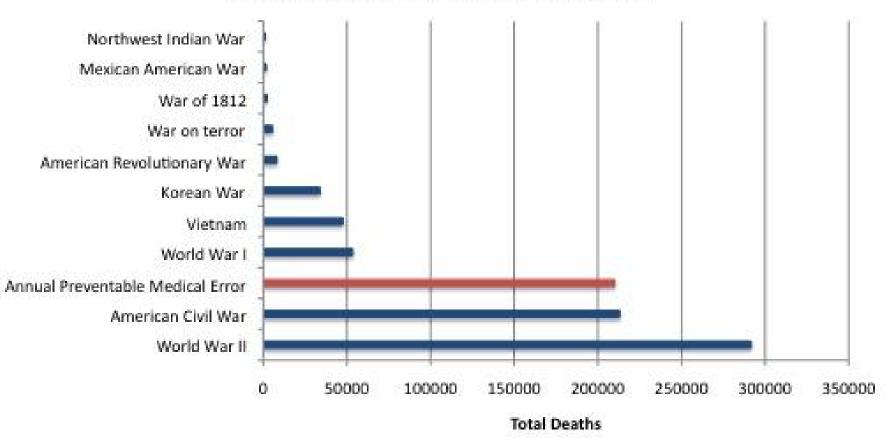
Standard	Title	Main Purpose			
AAMI/ANSI HE75:2009	Human Factors Engineering – Design of Medical Devices	Comprehensive reference that includes general principles, management of use error risk, design elements, integrated solutions			
ANSI/AAMI/IEC 62366-1:2015	Medical devices – Part 1: Application of usability engineering to medical devices	HFE/UE process applied to all applying HF/usability to medical device design, with consideration of risk management			
ANSI/AAMI/ISO 14971:2007/(R)2010	Medical Devices – Application of risk management to medical devices	Risk management process for medical devices			
IEC 60601-1-6:2010	Medical electrical equipment – Part 1-6: General requirements for basic safety and essential performance – Collateral standard: Usability	Provides a bridge between IEC 60601-1 and ANSI/AAMI/IEC 623			
IEC 60601-1-8 Edition 2.1 2012-11	Medical electrical equipment — Part 1-8: General requirements for basic safety and essential performance — Collateral Standard: General requirements, tests and guidance for alarm systems in medical electrical equipment and medical electrical systems	Design standard for alarm system in medical electrical equipment a systems			
IEC 60601-1- 11:2010 erWiseConsulting.com ht © 2016, UserWise, Inc.	Medical electrical equipment – Part 1-11: General requirements for basic safety and essential performance – Collateral Standard: Requirements for medical electrical equipment and medical electrical systems used in the home healthcare environment	Requirements for medical electric equipment used in non-clinical environments, including issues involving medical device use by l users			



Conservatively estimated, there are 210,000 preventable hospital deaths annually in the United States.

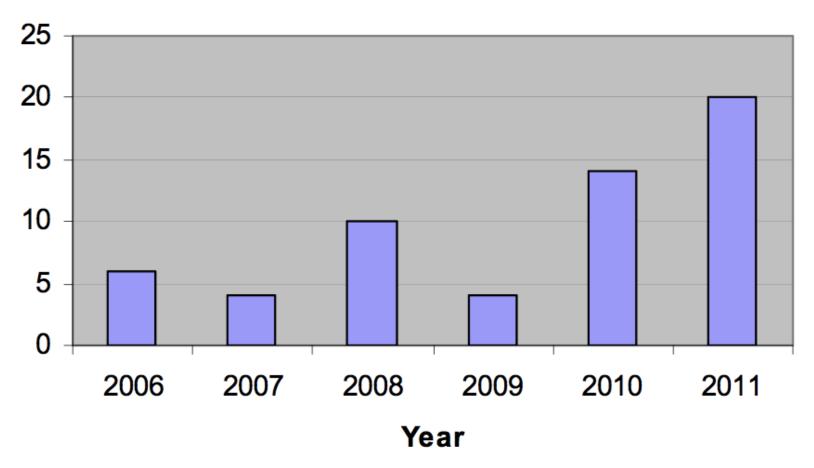
J Patient Saf & Volume 9, Number 3, September 2013

Human Factors in Aviation



Source: Fitts, P.M., & Jones, R.E. 1947a, Analysis of factors contributing to 460 "pilot error" experiences in operating aircraft controls, Report No. TSEAA-694-12

Image: http://spitfirespares.co.uk/Website%20Products%20284/halifax%20cocpit.jpg



American Combat Deaths by War

Medical Device Recalls due to Usability Issues

ACUSON Antares Ultrasound system by Siemens

- Ultrasound System was recalled in 2008
- The graphics made users misunderstand the image orientations of the patient's left and right sides. The users made the assumption that the patient's right and left sides were oriented in the same direction as the transducer, but this assumption was incorrect.

Bausch & Lomb MicroFlow 2.2 30 Phaco Needle

- Recalled in 2010
- Users may incorrectly assemble the plastic needle wrench to the phacoemulsification needle resulting in the generation of plastic particulate during cataract surgery.

Draft - Not for Implementation

List of Highest Priority Devices for Human Factors Review

Draft Guidance for Industry and Food and Drug Administration Staff

DRAFT GUIDANCE

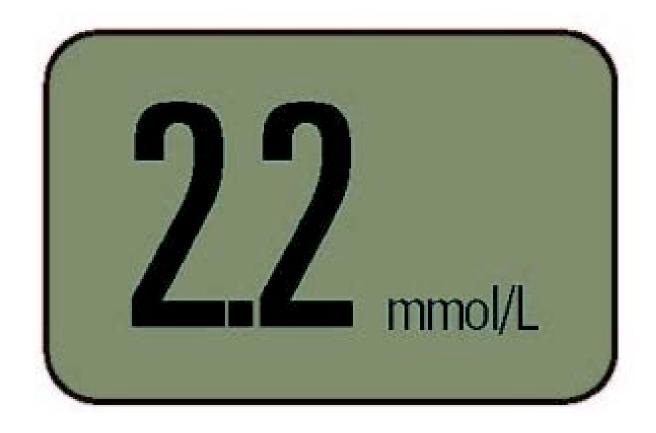
This draft guidance document is being distributed for comment purposes only.

Document issued on February 3, 2016.

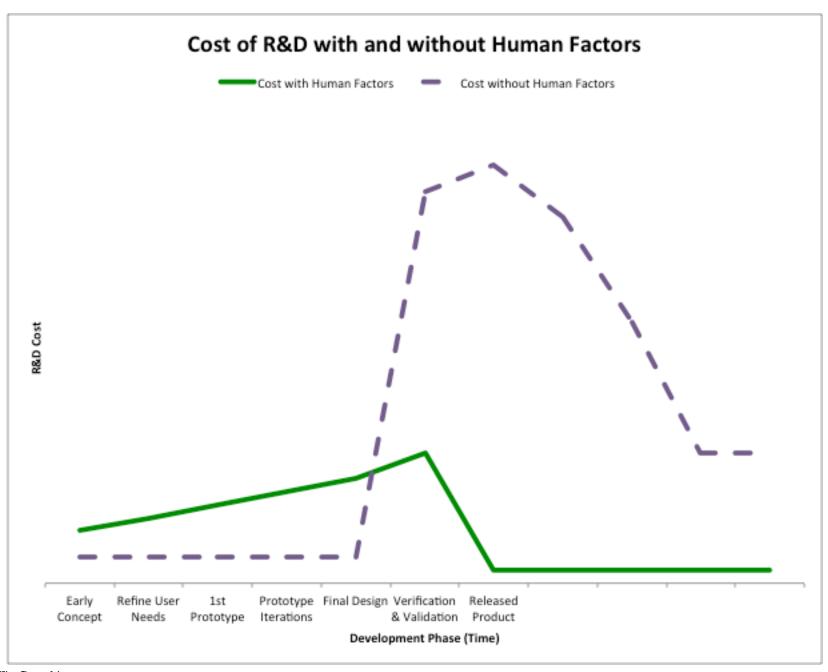
You should submit comments and suggestions regarding this draft document within 90 days of publication in the *Federal Register* of the notice announcing the availability of the draft guidance. Submit electronic comments to http://www.regulations.gov. Submit written comments to the Division of Dockets Management (HFA-305), Food and Drug Administration, 5630 Fishers Lane, rm. 1061, Rockville, MD 20852. Identify all comments with the docket number listed in the notice of availability that publishes in the *Federal Register*.

For questions regarding this document, contact the Human Factors Premarket Evaluation Team at (301) 796-5580.

U.S. Department of Health and Human Services
Food and Drug Administration
Center for Devices and Radiological Health
Office of Device Evaluation


AED 10 and MRL Jumpstart Welch Allyn Protocol, Inc

- AED was recalled in 2009
- Possible for users to misunderstand low battery indicator signals and subsequently cease use of the device unnecessarily.



Glucose Meter Recall

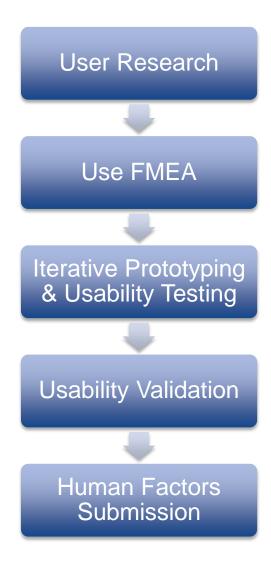
Shannon's Three Mantras

- Give users what they NEED, not necessarily what they say they want.
- Make the user experience "invisible"
- Minimize/Eliminate the need for training, where possible.

Give users what they NEED, not necessarily what they say they want

Make the user experience "invisible"

- Sensor that tracks tachychardia in elderly patients
- Upload data to computer?
 - USB cord?
- Does this user interface really need to exist?



Minimize/Eliminate the need for training, where possible

- Hospital Glucose Meter
 - Dose Calculation
 - Patient tracking
 - Cleaning Process

Human Factors Process

What is Early Stage Human Factors Research?

- Find out what people are really thinking through observation at point of use.
 - Actions speak louder than words.

What is Early Stage Human Factors Research?

 Identify environmental, social, and motivational considerations for the design.

Image: http://www.greenelectric-inc.com/datal/images/operating_room_under_green_light.jpg

User Research

What is Early Stage Human Factors Research?

 Use appropriate sample, representative of ALL user types.

Image: http://www.sumcrenewal.org/wp-content/uploads/NHS.jpg

Image: http://seeclickfix.com/issues/73708-ugly-building

User Research

What is Early Stage Human Factors Research?

Observation can help you ask better questions

Example 1:

 Do you prefer to use a surgical stapler or suturing for that activity?

VS.

What method do you use to achieve a seal?

Example 2:

- What percentage of the time do you clean the injection site, first?
 vs.
- What challenges do you encounter when preparing the site?

Tips for User Research

- Enter with an open mind
- Observe directly
- Don't lead or prompt the user
- Keep neutral body language

Human Factors Process

User Research **Use FMEA** Iterative Prototyping & Usability Testing **Usability Validation Human Factors** Submission

User Research Outputs:

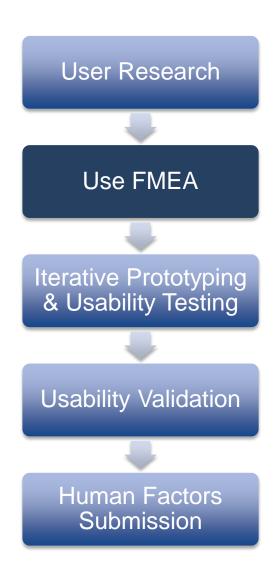
- •User Profile Description
- •Use Environment Description
- Training Description
- •Known Use Error Summary
- Customer Requirements
- Product Requirements
- •Task Analysis

Use FMEA

Use FMEA

Task	Hazard	Use Errors	Use Error Probability	Hazard Severity	Risk Level	Method of Control	Effectiveness of Control	Risk Level with Control	Risk Acceptability
1. Open case	Delay in therapy	Difficulty / unable to open case	3	5	15	Use fabric case with hook-and-loop closures	1	15	Acceptable with review
	Broken/torn fingernail	Use fingernail to open latch	1	2	2	No latch	1	2	Acceptable
2. Tear open electrode package	No therapy delivered	Package missing as result of not being replaced from previous use	×	5	15	Design case with slot positions for accessories; missing item obvious; recommend admin procedures using seals	2	30	Acceptable with review
	No therapy delivered	Tear electrode when attempting to open package	3	5	15	Provide "zipper" closure that allows easy opening of sealed package; construct electrode with non-tear backing	1	15	Acceptable with review
	Delay in therapy	Difficult / unable to open package	3	5	15	Provide "zipper" dosure that allows easy opening of sealed package	1	15	Acceptable with review
3. Expose upper chest of patient	Non-delivery of shock	Clothing not adequately removed	2	5	10	Provide scissors; provide pictorial and auditory instructions	2	20	Acceptable with review
	Burn caused by metallicobject in clothing	Wire in under- garment or metal fastener left in place	2	3	6	Provide pictorial and auditory instructions	3	18	Acceptable with review
4. Peel backing from electrodes	Delay in therapy	Difficulty removing backing	3	5	15	Provide extended tab which allows easy removal of backing	1	15	Acceptable with review
	Non-delivery of shock	Used without moving backing	2	5	10	Detection circuit will alarm because EKG signal will not be detected with insulated electrodes	1	10	Acceptable with review
5. Apply electrodes to chest	Shock not delivered properly	Improper positioning	3	5	15	Provide pictorial and auditory instructions	3	45	Acceptable with review
	Local burn	Electrodes placed too close together	2	3	6	Provide pictorial and auditory instructions	3	18	Acceptable with review

http://uxpamagazine.org/total-recall/



Use Error Mitigation: Hierarchy of Actions

- 1. Design out the use error
- 2. Guard against the use error
- 3. Warn
- 4. Information for safety
 - a) Labeling
 - b) Instructions for Use
 - c) Training
- 5. Remove feature

Human Factors Process

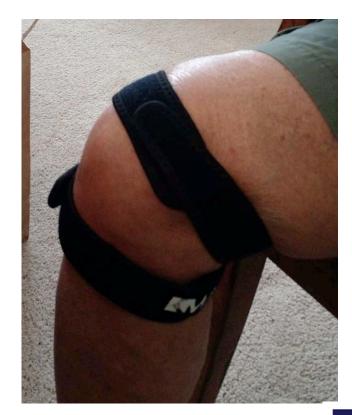
Risk Analysis Outputs:

- •Use FMEA
- •Design Requirements that ensure safe use

Human Factors Process

User Research Use FMEA Iterative Prototyping & Usability Testing **Usability Validation** Human Factors Submission

Usability Testing Outputs:


- New Requirements
- Easy-to-use prototype
- Long-term Cost savings
- Usability Test Reports to support robust submission

Comparative Usability Study Example

- Where do users naturally place the device?
- Which design is preferred?
- Which design is safest?

Iterative Prototyping & Usability Testing

Prototype 1 Placement

Iterative Prototyping & Usability Testing

Prototype 2 Placement

User misinterpreted the purpose of the device

 In one case this led to a user placing the sensors "where the knee hurt"

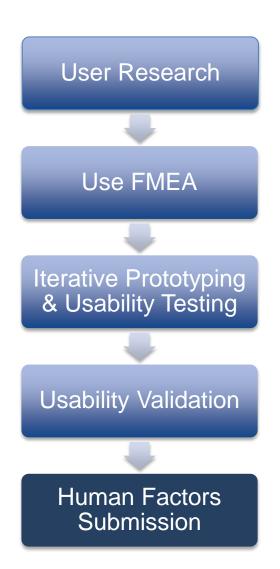
 Consider making it look different from a Band-Aid

Human Factors Process

User Research **Use FMEA Iterative Prototyping** & Usability Testing **Usability Validation Human Factors** Submission

Usability Validation:

- •Usability Validation Report for compliance with EU and FDA regulations
- Validated/ConfirmedUsability Risk Analysis


Usability Validation Example

- 16 surgeons
- 1-hour sessions
- No training

Human Factors Process

HFE Submission:

- •HFE Submission Summary of entire HF process to minimize questions from the FDA
- •E.U. requires Usability Engineering File

Summary of UserWise Offerings

User Research

- Literature reviews to investigate known use errors
- Summary of Known Use Errors
- Task Analysis
- Use Scenario Identification
- User Profiles and Personas
- Use Environment Description
- Authoring and Refining User Needs

Risk Analysis

- Use-Related Risk Analysis
- Development of design requirements to ensure safe use

Usability Testing

- Early-Stage Usability Study Protocols and Reports
- Usability Validation Study Protocols and Reports
- Usability Study coordination and execution

HFE Submission Output:

- HFE Submission Report (for 510(k), de Novo, or PMA application)
- Preparation of the Usability Engineering File (oUS)

Conclusion

- The FDA requires adherence to the Human Factors Process
- Follow the process early and often for long-term cost savings
- Make User-Centered Design a priority

Questions?

Shannon E. Clark, P. E.

(650) 996-7480
Shannon.Clark@UserWiseConsulting.com
www.UserWiseConsulting.com